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Abstract

I study whether the latest versions of the Large Language Model GPT-3 can produce
well-calibrated and robust zero-shot verbal epistemic uncertainty estimates about
their knowledge. As context for later results, I first estimate each model’s knowledge
about my dataset, by measuring the accuracy of their numerical point estimates.
Secondly, I conduct four experiments with increasingly complex possibilities to
express uncertainty about whether a proposed answer is true. Thirdly, I prompt the
models to estimate their uncertainty via confidence intervals. Every experiment uses
the GPT-3 models Ada, Babbage, Curie, and Davinci, which differ in the number
of parameters and allow me to test for changes due to the scaling of language
models. To test for robustness, I execute similar experiments, use differently phrased
prompts, and create adversarial examples. I find that all models can verbally express
uncertainty, but only the largest model returns calibrated epistemic uncertainty
estimates for some experiments. Smaller models’ epistemic uncertainty estimates
are not calibrated for any of the experiments. Overall, larger models are more robust
to changes in the prompt and have significantly better question-answering abilities.
I hope that these results provide insight into the capabilities of current language
models to verbally express epistemic uncertainty. While their verbal epistemic
uncertainty estimates might seem plausible at first sight, they are not calibrated,
coherent or robust in most cases.



German Abstract

Ich untersuche, ob die neuesten Versionen des Sprachmodells GPT-3 gut kalibrierte
und robuste verbale Schidtzungen der epistemischen Unsicherheit iiber ihr eigenes
Wissen liefern konnen. Als Kontext fiir die spéteren Ergebnisse schétze ich zunéchst
das Wissen der einzelnen Modelle fiir meinen Datensatz, indem ich die Genauigkeit
ihrer Punktschidtzungen messe. Zweitens fiihre ich vier Experimente mit zunehmend
komplexeren Moglichkeiten durch, die eigene Unsicherheit dariiber auszudriicken,
ob eine vorgeschlagene Antwort wahr ist. Drittens lasse ich die Modelle ihre Un-
sicherheit tiber Konfidenzintervalle ausdriicken. In jedem Experiment werden die
GPT-3 Modelle Ada, Babbage, Curie und Davinci verwendet, die sich in der Anzahl
der Parameter unterscheiden und es mir ermoglichen, Veranderungen aufgrund der
Skalierung der Sprachmodelle zu testen. Um die Robustheit zu testen, fiihre ich dhn-
liche Experimente durch, verwende unterschiedlich formulierte Aufgabenstellungen
und erstelle gegnerische Beispiele. Ich stelle fest, dass alle Modelle Unsicherheit
verbal ausdriicken konnen, aber nur das grofste Modell fiir einige Experimente seine
epistemische Unsicherheit kalibriert schdtzen kann. Kleinere Modelle sind nicht
kalibriert im Schitzen ihrer Unsicherheit. Insgesamt sind grofiere Modelle robuster
gegeniiber Anderungen in der Aufgabenstellung und haben eine deutlich bessere
Fahigkeit, Fragen zu beantworten. Ich hoffe, dass diese Ergebnisse einen Einblick
in die Fahigkeiten der aktuellen Sprachmodelle geben, epistemische Unsicherheit
verbal auszudriicken. Wahrend ihre verbalen Schdtzungen der epistemischen Un-
sicherheit auf den ersten Blick plausibel erscheinen kénnen, sind sie in den meisten
Fallen nicht kalibriert, kohdrent oder robust.
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1. Introduction

In recent years, large language models have become increasingly popular in the
field of machine learning. These models can learn from large amounts of data and
can be used for a variety of natural language processing tasks such as automated
question answering, machine translation, and text summarization (Liu et al., 2019;
Brown et al., 2020; Rae et al., 2021} Chowdhery et al. 2022; |Smith et al., 2022).
With the development of the transformer architecture by Vaswani et al.| (2017),
language models leaped forward in terms of their ability to generate human-like text.
Furthermore, the number of parameters and amount of compute used to train such
large-scale models has increased very rapidly in recent years (Sevilla et al., 2022).
Large-scale transformer-based language models like GPT-3 have shown impressive
task-agnostic zero-shot and few-shot capabilities, without any fine-tuning (Brown
et al., 2020). This means that they are able to learn new tasks from scratch, simply
by receiving instructions or observing a few examples. GPT-3’s ability to follow
instructions was further improved by Ouyang et al.| (2022), through fine-tuning
via reinforcement learning from human feedback, and resulted in the improved
InstructGPT models. I use four similarly trained Instruct models in my Bachelor’s
thesis, hereby coined InstructGPT models. Those models will be assessed in zero-
shot settings for their verbal epistemic uncertainty estimations. I will evaluate and
compare the performance of different epistemic uncertainty estimation experiments,
such as estimating the probability that a proposed answer is true or giving confidence
intervals for numeric answers. As [Kadavath et al|(2022) point out, the ability of
Al systems to evaluate their level of confidence in their own knowledge accurately,
faithfully, and well-calibrated is a prerequisite for honest, robust, and trustworthy
Al systems that can be used safely in applications. A lack of such abilities can have
negative consequences in the real world (Hendrycks et al.}[2021), as Al systems like
GPT-3 are already used in hundreds of applications today (Pilipiszyn, |2021). I hope
that the results of my Bachelor’s thesis will contribute to a better understanding of
the capabilities and limitations of InstructGPT and current language models.
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Chapter 1. Introduction

My main findings for the InstructGPT models are as follows:

Larger InstructGPT models have better question-answering capabilities and
make smaller errors in their point estimates. The respective mean point estimate
accuracies for my dataset are 3% for Ada, 12% for Babbage, 30% for Curie, and 65%
for Davinci.

All InstructGPT models are capable of verbally estimating their epistemic uncer-
tainty in a variety of ways. When prompted correctly, every model returned valid
estimates for most experiments in more than 90% of cases.

Prompt design has a significant impact on InstructGPT models’ answers, and
uncertainty estimates between experiments are not internally coherent. Uncertainty
estimated are substantially impacted by how the task is explained and in what order
possible answers are presented. Different alterations can produce contradicting
uncertainty estimates.

Larger InstructGPT models are more reliable to follow instructions than smaller
InstructGPT models. The number of ambiguous answers declines and the quality
of answers increases with the number of parameters.

Only the biggest InstructGPT model is calibrated for the "True or False” and the
"True or False or I don’t know experiment’. None of the other models show real
calibration for any of the experiments.

The calibration of the biggest InstructGPT model for the "True or False’ and the
"True or False or I don’t know” experiment is robust and only mildly affected
by most adversarial examples. Even when the question is significantly altered,
calibration remains as long as the meaning of the question and answer to the question
remains the same.
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2. Background

2.1. Natural Language Processing

Natural language processing (NLP) has the goal of enabling computers to analyze,
understand, and generate human natural language. Typical NLP tasks include
machine translation, text classification, language understanding, text summarization,
commonsense inference, and question answering. NLP research started in the 1950s
focussing on Symbolic NLP, an approach which is based on the idea that language
can be represented as a set of symbols and meaning can be derived by formal,
rule-based manipulation of those symbols. In the 1990s, statistical NLP became the
dominant approach, which follows the idea that natural language can be modeled
as a probabilistic process and that the meaning of a sentence can be derived from the
statistical properties of the data. Since the 2010s, machine learning methods like deep
neural networks became popular in NLP. Recurrent neural networks (RNNs) like
long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997), and gated
recurrent units (GRUs) (Chung et al, 2014), as well as convolutional neural networks
(CNN) (Wang and Gang), 2018) achieved then state-of-the-art performance in many
NLP tasks. However, such models can be difficult to parallelize and there is usually
a need for task-specific datasets and fine-tuning. This has so far limited the size and
general capabilities of language models.

2.2. Transformer Architecture

In 2017, the transformer architecture was developed by [Vaswani et al.|(2017) and
outperformed previous models in a variety of NLP tasks. Transformers scale with
parameters and training data, use efficient parallel training, and capture long-
range sequence features of text. Today, the transformer is the most prominent
architecture both for natural language understanding and generation (Wolf et al.,
2020). In contrast to previous approaches, the transformer architecture is solely
based on an attention mechanism, without a need for recurrence and convolutions.
Attention captures the relevance of the relationship between tokens in a text and
therefore provides context for interpretation. A high attention score means two
tokens are relevant to each other, a low score indicates that they are unrelated to
one another. A good example for illustration can be found in |Vig|(2019): "The quick,
brown fox jumps over the lazy". The word "brown" is very relevant to “fox”, but
irrelevant to "lazy". Therefore, the attention score for "brown" and "fox" should

13



Chapter 2. Background

be high and the attention score for "brown" and "lazy" should be low. In contrast
to the standard weights of the transformer, which are fixed during runtime, the
attention weights change during runtime. GPT-3 and InstructGPT use so-called
masked multi-head self-attention, which improves parallel training and can express
more high-level attention relationships (Ghojogh and Ghodsi, 2020). Overall, the
transformer architecture is particularly suited for pretraining on large text corpora,
leading to improvements on many downstream tasks including question answering,
text classification, machine translation, sentiment analysis, language understanding,
commonsense reasoning and summarization (Wang et al., 2018; Yang et al., 2019;
Brown et al.| 2020; |(Chowdhery et al., 2022; Smith et al., 2022).

2.3. GPT-3 and InstructGPT

In 2020, OpenAl released the Generative Pre-trained Transformer 3 (GPT-3), a 175
billion parameter language model, bigger than any previous language model. The
scaling-up of the model greatly improved task-agnostic zero-shot and few-shot
performance in many NLP tasks (Brown et al., 2020). In the paper, eight models were
trained, ranging from 125 million parameters to 175 billion parameters. Four different
model sizes are available through the OpenAI API, which allowed me to run the
experiments with models of different sizes. All models use the subword tokenization
algorithm Byte-Pair Encoding (BPE) by Sennrich et al. (2015). First, a pre-tokenizer
splits the training data into words and determines the number of occurrences of each
word. Subsequently, BPE creates a vocabulary of a specified size by merging symbols
that occur in the set of unique words. This means that the models are working on
tokens, which can in some instances be whole words like " you" (including the space),
single symbols like "!", or subwords like "lor". Models get trained by predicting the
next token, given the previous tokens. All models were trained on around 300 billion
of such tokens, which were part of a dataset including English-language Wikipedia (3
billion tokens), Books1 and Books2 (12 and 55 billion tokens respectively), WebText2
(19 billion tokens) and CommonCrawl (filtered to around 410 billion). This means
that the models have potentially learned an amplitude of knowledge about the
real world that is implicitly contained in the dataset. In 2022, OpenAl improved
their previous models” abilities to follow instructions by fine-tuning the models
using reinforcement learning from human feedback, which resulted in the improved
InstructGPT models (Ouyang et al.,|[2022). This means that InstructGPT is able to
learn new tasks from scratch, simply by receiving instructions or observing a few
examples. Precisely because InstructGPT has improved task-agnostic performance,
the InstructGPT models are well suited for my experiments. Unfortunately, the
specific InstructGPT models published in the paper are not available through the
OpenAlI APIL. However, other Instruct models are available, whose training is very
similar or the same to the original InstructGPT models. For simplicity’s sake, I will
refer to those models available to me as InstructGPT models.

14



2.4. Ada, Babbage, Curie and Davinci

2.4. Ada, Babbage, Curie and Davinci

Through the OpenAl API, four different InstructGPT models are available. In
alphabetical and parameter size ascending order, these models are: Ada, named
after Ada Lovelace, who is often regarded as the first computer programmer (Fuegi
and Francis| 2003); Babbage, named after Charles Babbage, who originated the
concept of a digital programmable computer (Copeland| [2020); Curie, named after
Marie Curie, the first and only person to win the Nobel Prize in two scientific fields
2005); and Davinci, named after Leonardo da Vinci, one of the greatest
Renaissance artists 2004). Although the exact model sizes of Ada, Babbage,
Curie and Davinci are not specified by [Brown et al|(2020), they can be inferred.
According to EleutherAl the Ada, Babbage, Curie and Davinci models’ performances
line up closely with the 350 million, 1.3 billion, 6.7 billion, and 175 billion models
in the OpenAl paper respectively 2021). To contextualize these model sizes,
I compare the InstructGPT models to other relevant large language models from
recent years.

Large Language Models Sizes
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Figure 2.1.: GPT-3 Model Size compared to other LLMs

In 2018, Peters et al/ (2018) published their paper "Deep Contextualized Word
Representations", in which they present an ensemble of neurally derived repre-
sentations called ELMo (Embeddings from Language Models). The largest model
ELMo; has around 94 million parameters. Also in 2018, [Devlin et al.| (2018) propose
BERT (Bidirectional Encoder Representations from Transformers), which alleviates
the unidirectionality constraint of previous language models by using a “masked
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Chapter 2. Background

language model” (MLM). One year later, Radford et al.|(2019) released GPT-2, a 1.5
billion parameters transformer-based language model, the predecessor to GPT-3.
In the same year, Raffel et al.| (2019) published T5, another transformer-based lan-
guage model that was pre-trained on about 750 GB of natural English text. T5 also
comes in different sizes, the biggest around 11 billion parameters. This year, Smith
et al. (2022) trained Megatron-Turing NLG 530B (MT-NLG), a 530 billion parameter
transformer-based model, which improved then state-of-the-art performances on
several NLP benchmarks for zero-, one-, and few-shot learning. In April this year,
a 540-billion parameter transformer language model called Pathways Language
Model (PaLM) was published by |Chowdhery et al|(2022) from Google Research.
The model outperforms average human performance on the BIG-bench benchmark,
and often showed steep performance increases with increasing model size.

2.5. Uncertainty Estimates and Calibration

In machine learning, the uncertainty stemming from lack of knowledge is called
epistemic uncertainty and the irreducible, statistical uncertainty is called aleatoric
uncertainty (Hiillermeier et al., 2022). In my thesis, I want to explore the capability of
InstructGPT models to verbally express epistemic uncertainty about the accuracy of
their own knowledge. I want to do this by using questions to which a single, unam-
biguously correct, and known answer exists. Therefore, the expressed uncertainty
should only contain uncertainty that the model itself has over its own knowledge,
without any irreducible, statistical uncertainty over the answer to the question. If I
asked questions, to which no such single, unambiguously correct answer exists, the
expressed uncertainty would comprise different forms of uncertainty, and it would
be difficult to evaluate answers to such questions adequately. A question with a
single, unambiguously correct, and known answer is:

e Who served as the 16th President of the United States of America? - Abraham
Lincoln

e How many episodes, in total, does the series How I Met Your Mother have
over its nine seasons? - 208

In such cases, it is mostly clear, whether an answer is correct (more on that in the
discussion of my dataset|4.6). Examples for questions with no single, unambiguously
correct, and known answer are:

e How many people contracted COVID-19 from December 1st, 2019 to September
12th, 2022 at least once? (not known, only estimates exist)

e Is P = NP? (the answer to the P versus NP problem is currently not known)

e Will a fair coin land on heads? (aleatoric uncertainty)

e What is the meaning of life? (unclear if an answer exists)

e What color is the feeling of happiness? (unclear if that question makes sense)

16



2.6. Robustness and Adversarial Examples

As Lichtenstein and Fischhoff (1980) explain, epistemic uncertainty estimates are
expressions of confidence in the state of one’s knowledge. A probability statement
like "I am 60% certain that Abraham Lincoln was the 16th President of the United
States" expresses the internal degree of belief and not a probability in the real world.
Epistemic uncertainty estimates should reflect a systematic relationship to the truth
of the answer. If numerous uncertainty estimates of 80% are made, around 80%
of them should be true. |Lichtenstein and Fischhoff| (1980) call the formalization of
this property calibration. Estimates are well-calibrated if the predicted probabilities
are perfectly correlated with the probabilities of correctness. Research in the social
sciences has shown, that calibration of humans is usually poor and humans are often
overconfident (Lichtenstein et al., 1977; Dunning et al., 1990; Schaefer et al., 2004;
Mannes and Moore, 2013). Overconfidence is the judgmental error of overestimating
one’s own accuracy. It is reasonable to assume that these judgmental errors are
ubiquitous in the training dataset of InstructGPT, as the models are trained on human
text. As pointed out by |[Lin et al.|(2022) research on the calibration of language
models has mostly focused on models” output probabilities, their "logits" (Guo et al.,
2017; Jiang et al., 2021). However, such output probability distributions over tokens
are not the same as expressing epistemic uncertainty about the claim itself. Instead,
I want the model to verbally express its epistemic uncertainty about the claim in
natural language, which is called "verbalized probability" by Lin et al.| (2022).

2.6. Robustness and Adversarial Examples

Robustness in language models means that the model is able to perform well even
when small changes to the textual input are introduced or the textual input is
different from the training data. Such changes include paraphrasing the sentence
and introducing spelling mistakes or other erroneous symbols. A robust language
model should be able to handle such changes without losing accuracy, similar to a
human, who would be able to answer a question regardless of small changes to the
question. Adversarial examples are purposefully designed to exploit a model’s lack of
robustness and are therefore used for assessing robustness. Compared to generating
adversarial examples in continuous data domains like images, generating natural
language adversarial examples that preserve the original meaning is challenging
since the text space is discrete and non-differentiable. Textual adversarial attacks are
mostly generated through substituting words (Alzantot et al., 2018; Ren et al., 2019;
Ebrahimi et al., 2018) or paraphrasing entire sentences (Zhang et al., 2019; Iyyer et al.,
2018) to preserve the meaning of a statement or question. While such alterations
seem innocuous to humans, research has shown that textual adversarial attacks can
successfully deceive large language models like InstructGPT, BERT, and others (Jin
et al., 2019; Nie et al., 2019;|Wang et al., 2019; Zang et al., 2020; Branch et al., 2022).
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Chapter 2. Background

2.7. Zero-Short Learning in Language Models

In computer vision research, zero-shot learning aims to classify images that have
no training examples (Lampert et al., 2014} Xian et al 2017). Research on large
languagemModels often focuses on zero-shot model adaptations to natural language
descriptions of tasks (Puri and Catanzaro, 2019). This allows pretrained language
models to perform new tasks when only equipped with instructional prompts (Liu
et al.,2021). Results from zero-shot learning are often impressive if the models are
prompted appropriately. Kadavath et al.| (2022) find that their language models are
somewhat calibrated for zero-shot "True or False’ questions. Kojima et al.|(2022) show
that large language models are decent zero-shot reasoners if prompted correctly. In
my experiments, prompts always contain an explicit or implicit natural language
instruction of what the model has to do. InstructGPT was not fine-tuned for any of
the experiments and prompts do not contain examples, except for the confidence
interval experiment.

2.8. Research Question

Is InstructGPT capable of verbally expressing epistemic uncertainty about its
knowledge? When prompted to estimate how likely a proposed answer is true,
are the returned probabilities between 0% and 100%? When prompted to estimate
uncertainty estimates via multiple choice, are answers valid options? When prompted
to return a confidence interval for a question with a numeric answer, is InstructGPT
able to return a valid confidence interval?

Are InstructGPTs uncertainty estimates coherent and robust? How susceptible are
model outputs to changes in the prompt? Are estimates coherent, when changing
the order of multiple choice answer options? Do the models adapt its answer to the
questions, or are answers mostly static? Do the models return similar uncertainty
estimates for different ways to extract uncertainty?

Are InstructGPTs uncertainty estimates calibrated? Are proposed answers, that are
far from the correct answer, less likely to be estimated as being true? What are the
Brier scores of the confidence intervals? Is InstructGPT overconfident and similarly
calibrated, as average humans are? Overall, do InstructGPTs uncertainty estimates
make sense?

How does model size change the answer to previous questions? Does robustness or
calibration improve with an increase in model size, or do larger models suffer from
the same shortcomings? Are there clear trends in performance differences between
smaller and larger models?

18



3. Related Work

Niculescu-Mizil and Caruanal (2005) analyze the calibration of classical machine
learning algorithms like Naive Bayes, Random Forests, and SVMs but also neural
networks. They find that early neural networks are well-calibrated for binary classi-
fication tasks. They measure calibration through the model’s output probabilities
and not through verbalized uncertainty estimates.

Guo et al| (2017) found that calibration for modern neural networks is much
worse than for neural networks from a decade earlier. They demonstrate that this
deterioration of calibration is due to changes in network architecture and training as
well as model size, normalization, and regularization.

Brown et al.| (2020) introduce GPT-3 and assess their model’s capabilities, including
closed-book question answering and general zero-shot and few-shot tasks. They do
not test their models for calibration.

Branwen| (2020) experiments with GPT-3s ability to express verbalized uncertainty
on trivia questions and finds that GPT-3 is incapable of expressing well-calibrated
uncertainty estimates and instead often returns "95% confidence" for answers that are
wrong and very implausible. This inspired my free uncertainty estimate experiment.

Desai and Durrett| (2020) analyze the calibration of BERT (Devlin et al., 2018)
and RoBERTa (Liu et al| 2019) for language inference, paraphrase detection, and
commonsense reasoning. They find that the "out-of-the-box" models have reasonably
well-calibrated output probabilities and that calibration can be improved by post-
process temperature scaling, introduced by |Guo et al.|(2017)

Jiang et al|(2021) find that then state-of-the-art language models like T5 (Raffel
et al.,|2019) and GPT-3 (Brown et al., 2020) are poorly calibrated for the UnifiedQA
dataset by Khashabi et al.|(2020). While they use different methods, their research
has inspired and informed some of my experiments.

Ouyang et al|(2022) introduce the InstructGPT models. Their approaches informed
mine and without access to their InstructGPT models, through the OpenAI APL, my
research would not have been possible.

Lin et al.[(2022) fine-tuned GPT-3 model "Davinci" with supervised learning to express
its uncertainty verbally. They compare calibration of uncertainty expressed verbally,
to uncertainty extracted from the model output probabilities "logits". Their research
inspired my free uncertainty estimate experiment and my research extends
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Chapter 3. Related Work

theirs by working with the improved InstructGPT, including "text-davinci-002", and
introducing further experiments.

Mielke et al| (2022) analyze the verbal calibration of BlenderBot by Roller et al.
(2020) and find that it is poorly calibrated for verbal uncertainty estimates. They
use a different method of expressing linguistic uncertainty, by using four different
categories:

DK none: admits not to know

LO low: expresses uncertainty

HI high: confidently answers

OT completely ignores the question

Their paper inspired using multiple choice style questions in Chapter 6|

Kadavath et al. (2022) extensively studied uncertainty estimations and calibration of
their own language models. For their experiments, they use four language models
ranging in size from 800 million to 52 billion parameters, building on previous
research by Bai et al.| (2022). They find that after fine-tuning with reinforcement
learning from human feedback, their model’s logits are well-calibrated on "True or
False” and multiple choice questions. However, their models are poorly calibrated for
verbally self-evaluating their epistemic uncertainty. I adopt some of their question
formats to make my results comparable to theirs.

The main contribution of my Bachelor thesis is the evaluation of InstructGPT’s
abilities to verbally estimate epistemic uncertainty about its own knowledge. By
using the latest and improved version of GPT-3 I use a state-of-the-art language
model, which has only been released a couple of months before writing this thesis.
By using a dataset with only numeric values as answers, I can focus on novel
experiments like estimating uncertainty through confidence intervals. While my
Bachelor thesis is hopefully a small contribution to highlighting the limitations
of pretrained transformer-based language models” abilities to self-evaluate their
confidence, the more challenging and valuable problem of improving calibration by
more than prompt design is, due to limitations in ability, funding, and time, not part
of this thesis.
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4. Methods

4.1. Models

For my experiments, I used the four latest Instruct models Ada (text-ada-001),
Babbage (text-babbage-001), Curie (text-curie-001), and Davinci (text-davinci-002),
which all are available via the OpenAI API This enabled me to evaluate performances
across different model sizes to understand possible scaling behavior of large language
models. Ouyang et al.|(2022) from OpenAl published very similar Instruct models
that showed improvements in truthfulness, greater ability to follow instructions,
and generally improved alignment with human intent. However, the exact models
published in the paper are not available through the OpenAl API. Therefore, I used
the aforementioned models, which I will refer to as InstructGPT models.

4.2. OpenAl API

The OpenAl API can be found online at https://openai.com/api/, with extensive
documentation at https://beta.openai.com/docs/introduction/overviemn.
I used the python bindings documented in https://beta.openai.com/docs/1
ibraries/python-bindings, which allowed me to fully automate the execution
and evaluation of my experiments in Jupyter Notebook. The most relevant details
of this method are documented in this chapter. With the provided information,
my experiments should be replicable for everyone with a basic understanding of
the programming language Python. To quickly check some results manually or
play around, the OpenAl "Playground" gives quick access and can be found at
https://beta.openai.com/playground.

4.3. Prompts

The API provides a way to input text as a prompt, and then use the selected model to
generate a text completion that attempts to match the context, instruction, or pattern
in the prompt. For example, if one enters the prompt “How are you doing?” into the
API, the Davinci model will return “I'm doing well, thank you. How are you?” as a
completion. By designing appropriate prompts, the models can be used for different
tasks like question answering, summarization, conversation, code generation, and
more (Brown et al., 2020). The specific prompt design is critical for generating the
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desired responses. Although going into the specifics of good prompt design is out
of the scope of this thesis, there are a few basics that are important to understand
for the reader. First, the model’s response is not "GPT-3 itself". The completion
under the settings described under section will use greedy decoding, which
generally speaking is choosing the token that the model estimates as the most likely
continuation of the previous text until an end is most likely or the maximum number
of predicted tokens is reached. This means that if the prompt includes real or fictional
characters/entities, the most likely continuation of tokens will seem as if GPT-3 takes
the role of one or many such characters/entities. For example, to the question "Who
are you?" the Davinci model under the standard settings from section [£.4]answers "I
am a 20-year-old student at the University of Utah in the United States". Similarly,
conversations between people can be prompted and will be continued by the model.
Secondly;, it is important to note that GPT-3 does not "remember" past questions if
they are not part of the prompt. It is a static model that will answer deterministically
under specific settings, including the Standard Settings (section [4.4).

For the experiments, every prompt consisted of two parts: a question that is part
of the dataset (described in section[4.6), and a context that surrounds the question.
The entire prompt, containing both context and question, is given as input to the
model. I will give an example in which the entire prompt is printed in typewriter
font, and additionally, the context is printed in italic and the question in bold:

You are the contestant on a game show and the next question is worth
the grand prize. You must answer correctly to win.

Question: How many episodes, in total, does the series How I Met Your
Mother have over its nine seasons?

Your answer:

The resulting completion of the Davinci model would be "There are 208 episodes in
total." When running an experiment, the model, request query settings, and context
stay unchanged, but the question is changed in each iteration until each question
in the dataset was asked once. The prompts for each experiment are found in the
respective experiment chapters.

22
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4.4. Standard Request Query

For the "Point Estimate” and “Confidence Interval” experiments, I used the following
settings, if not stated differently:

response = openai.Completion.create(
engine=engine,
prompt=prompt,
max_tokens = 100,
temperature = 0,
top_p=1,
n=1,
echo = False,
frequency_penalty=0,
presence_penalty=0)

As the variable engine, I used any of the models in[4.1]in their most current version
(September 2022).

"text-ada-001"
"text-babbage-001’
"text-curie-001"
"text-davinci-002’

For the sake of simplicity, I will refer to the models by their respective names Ada,
Babbage, Curie and Davinci and not by the "engine" variable string used in the
request query. As the variable "prompt", the textual input for the model, I used the
respective prompts specified in the experiment chapters. The "temperature" and
"top_p" variables were always set to temperature = 0 and top_p = 1, in order to
make the response of the models deterministic and the experiments replicable. The
meaning of other settings can be looked up in the documentation of OpenAl at
https://beta.openai.com/docs/api-reference/completions/create.

4.4.1. Point Estimate Special Settings

In the point estimate experiment, some of the contexts introduce two entities that
interact with each other via text (e.g. a host and a contestant in a game show). We
call these entities Entityl and Entity2. In such cases, the standard response setting is
adapted in the following way (changes in bold):

start_sequence = "\nEntity1:"
restart_sequence = "\nEntity2: "
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response = openai.Completion.create(
engine=engine,
prompt=prompt,
max_tokens = 100,
temperature = 0,
top_p=1,
n=1,
echo = False,
frequency_penalty=0,
presence_penalty=0,
stop=[" Entity1:", " Entity2:"])

This prompts the model to generate text completions by alternating responses from

Entityl and Entity2.

4.5. Extraction of Answers

4.5.1. Extraction of Text Completion

After making a request via the OpenAl API, a response of the type <class ‘ope-
nai.openai_object.OpenAlObject’> is given. For our standard request query defined
in engine = "text-davinci-002” and prompt = "How many episodes, in total, does
the series How I Met Your Mother have over its nine seasons?’, we get the following

response:

"choices™: [
"finish_reason": "stop",
"index": 0,
"logprobs": null,

",

"text": "\n\nThere are 208 episodes in total."

}

1,
"created": 1661941885,

"id": "empl-51FIDhkSK1EgzVHuUPmStvCRDbbYtC",

"model": "text-davinci-002",

"object": "text_completion”,

"usage": {
"completion_tokens": 9,
"prompt_tokens": 21,

"total_tokens": 30
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We can extract the InstructGPTs text completion with response[’choices’][0]["text’],
as a string. There are many ways in which relevant values can occur in the text
completion string.

Integers, e.g. "There are 208 episodes in total."

Decimal numbers, e.g. "One World Trade Center is 541.3 meters tall."

Dates, e.g. "Steamboat Willie was released on November 18th, 1928."

Word numbers, e.g. "Beethoven composed nine operas."

Mulitple Integers, e.g. "Bayern Munich scored a total of 91 goals in the
Bundesliga Season 2012/2013."

Multiple Choice Answers, e.g. "(B) 30%"

e Percentages, e.g. "l am 80% certain that the proposed answer is correct"

e Confidence Intervals, e.g. "My confidence Interval is [5, 27]"

Those basic cases can occur in different variations. In most experiments, I proceeded
in two steps. The first step was extracting every possibly relevant value from the
string. Secondly, I chose the value(s) most likely to be relevant for the experiment.
This second step is specific for each experiment and is explained separately in the

following subchapters [41.5.2, [41.5.3, 4.5.4and [41.5.5[

4.5.2. Point Estimate Extraction

As part of the first step of extracting values, the string is split and checked for word
numbers (e.g. "five", "twelve") with a library. All word numbers are changed to
integers or decimals. After that, a regular expression is used to find all values in the
string. I used the re library in Python with: re.findall("\d*\.? \d+’, text_completion)
to find all integers and decimals and save the identified values in a list. Given the
list of extracted values, it is generally difficult to decide which value is the point
estimate and which ones are not. The option I chose is to always choose the value
which is closest to the correct answer. If the list of extracted values was empty, the
point estimate was set to null. More on the limitations and errors in this approach in

section

Example Point Estimate Extraction:

answer string: "Bayern Munich scored a total of 91 goals in the Bundesliga Season
2012/2013."

extracted values: 91, 2012, 2013

correct answer: 98

extracted point estimate: 91
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4.5.3. Multiple Choice Extraction

For experiments in which a multiple choice formatting was used, the text completion
was checked for keywords specific to the available answer options. For example, if
the answer option "(C) 50%" existed, the keywords "C)", and "50%" were searched. If
at least one keyword for an answer option was identified in the text completion and
no contradicting keyword from another answer option was identified, the respective
answer was saved. In the case that contradicting keywords were identified in the
text completion that belong to different answer options, the answer of the model
was saved as "false’.

Example Multiple Choice Extraction:
answer string: "C) 50%."

extracted values: "C)", "50%"
extracted MC answer: (C)

4.5.4. Free Uncertainty Estimate Extraction

For experiments in which a free uncertainty estimate was used, the given percentage
was extracted in the same way as the point estimates were extracted, described in
section[4.5.2] If exactly one value was identified, the value was saved. If less or more
than one value was identified, null was saved.

Example Free Uncertainty Extraction:
answer string: "95%."

extracted value: 95

extracted uncertainty estimate: 95

4.5.5. Confidence Interval Extraction

Confidence intervals were returned in different styles, but in all valid cases they
contained exactly two values.

e fromxtoy
e from x-y
L] X—y

* Xy

* [x,y]

o [x-y]

[ ]

between x and y

If exactly two values were extracted, the first was set as the lower bound and the
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second as the upper bound. Additionally, it was tested whether the lower bound
was smaller or equal to the upper bound. If less than two values were extracted, the
bounds of the confidence interval were both set to null. In such cases, the confidence
interval is ambiguous. If more than two values were extracted, the smallest was
chosen as the lower bound and the biggest as the upper bound of the confidence
interval. More on the limitations and errors in this approach in section

Example Free Uncertainty Extraction:
answer string: " 1227:1241."

extracted values: 1227, 1241

extracted lower bound: 1227
extracted upper bound: 1241

4.5.6. Errors in Answer Extraction

Empirically, the answer extraction and interpretation methods I used worked
extremely well. However, they are not perfect. After spot checking more than a
thousand of my automated extractions manually, I discovered a handful of errors
where the automated extraction failed. As an example, from the model completion
"Pepin the Short, also called Pepin the Younger, died in year 9 of the 9th century."
the answer 0 was incorrectly extracted, instead of 909. Nevertheless, for the scope
and required accuracy, the automated extraction is still the best option available and
sufficiently accurate because:

1. Errors occurred in less than 1% of the spot-checked examples, which were from
diverse experiments, models and prompts. Therefore, the empirical error rate is very
low.

2. The effect sizes of the experiments are large enough to not be dependent on exact
% accuracy.

3. Hand-checking is not a great alternative because it would be prone to some human
error and would not be time-efficient.

4. Many other variables influence the results of the experiments more strongly, like
prompt design and questions selected for the dataset. Therefore, I rather spent a lot
of time on designing a well-balanced dataset and prompt designs.

It is important to note that errors in value extraction are not the same as what I
call ambiguous answers. An error in value extraction occurs when the automated
extraction does not identify an answer by the system correctly, by overlooking
or misinterpreting the answer contained in the text completion. An ambiguous
answer, on the other hand, is when the automated extraction identifies that the text
completion of the model does not contain a valid answer - for example, if only a
single value is returned when a confidence interval is demanded. Depending on the
experiment and the model, the number of ambiguous answers can be very high.
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4.6. Dataset

The dataset used in this experiment was created by myself to specifically suit the
needs of the experiments for this thesis. It consists of 250 factual questions, each of

which has a single integer as a correct answer.

Table 4.1.: Example Questions from the Dataset

question answer
How many episodes, in total, does the series How I Met Your Mother 208
have over its nine seasons?

In which year did Wu Zhao, commonly known as Wu Zetian, 705
the first empress of the Tang dynasty, die?

How tall is the Abraj Al-Bait Clock Tower in Mecca in meters? 601
In which year was Charlemagne or Charles the Great crowned 774
King of the Lombards?

In which year was the Bank of Saint George, the financial institution 1407
of the Republic of Genoa, founded?

How many goals did Bayern Munich score in the Bundesliga Season 77
2011/2012?

The dataset is a mix of questions that I thought up myself and questions that are
crawled from the internet. For every question, I checked whether a single correct
answer exists and whether the wording is unequivocal. The questions are from a
diverse mix of topics ranging from history, architecture, sports to pop culture.

Distribution of Correct Answers
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Figure 4.1.: The distribution of correct answers of the dataset is particularly clustered
between the values 0 and 50 and between values of 1900 and 2000.
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Every question’s correct answer is an integer between 1 and 1999. I tried to create a
balanced dataset, both in the area and depth of knowledge it requires to answer, as
well as in the distribution of answers. However, it is much harder to think of questions
whose answers are between 500 and 1500 than questions whose answers are less than
50 or between 1900 and 2000. The reason my dataset only contains 250 questions,
instead of multiple thousands of questions, is mostly due to financial constraints
of running experiments and the additional time it would take to thoroughly check
questions for quality and running times of experiments. Choosing only questions
for the dataset, for which a single, known, and unambiguously correct integer exists,
has multiple objectives in mind:

Firstly, as I elaborate in section my experiments are focused on epistemic
uncertainty and not on aleatoric uncertainty.

Secondly, estimating integers makes uncertainty estimates using confidence intervals
possible. This is obviously not possible for questions like, "Who was the 16th President
of the United States of America?".

Thirdly, one can propose answers that are closer or farther away from the correct
answer. The correct answer to the question "How many goals did Bayern Munich
score in the Bundesliga Season 2011/2012?" is 77. It is very difficult to distinguish
that from a proposed answer of 87, only a very well-informed soccer fan could tell
them from another. If we increase the difference between the correct answer and the
proposed answer to 100, however, it is possible for most soccer fans who watch the
Bundesliga to figure out that 177 goals in a single season of 34 Bundesliga games
is highly unlikely. If we increase the proposed answer to 1077, a person who has
watched a single soccer match should be able to identify the proposed answer as
rather implausible. A model evaluating the probability of such a proposed answer
being true should show a clear trend. Creating analogous proposed answers for
questions like "Who was the 16th President of the United States of America?" is
much more difficult and tedious.

Fourthly, it is much easier to evaluate, whether a given number is correct or not. As
described in section values come in many forms like integers, decimals, word
numbers, and dates, but are much more standardized than non-word numbers. If
the correct answer to a question is "Abraham Lincoln’, does “Abe Lincoln’, "Lincoln’,
"President Lincoln’, "Uncle Abe’ or "The Great Emancipator’ - all of which are common
nicknames and abbreviations for Abraham Lincoln - also count as the correct answer?
And how would one formalize such a list of possible answers for every question?

Lastly, very few papers have worked with answering questions with numeric
answers for LLMs. Mostly, they asked trivia questions with non-numeric answers.
Against this backdrop, there is novelty in asking this kind of questions.
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5.1.

Point Estimate

Motivation

As a first experiment, I generated point estimates with the InstructGPT models. A
point estimate is the "best guess" of an unknown value. This is important to test if
InstructGPT can understand the question and how much knowledge InstructGPT
already has about the questions in the dataset. Therefore, this is crucial information
for the later experiments because the model’s ability to express uncertainty differs if
10% or 90% of questions answers are already known to it.

5.2. Evalutation

5.2.1. Prompts

To test the models for robustness of their predictions under different contexts, I
devised 6 different prompts.

1.

Standard: Short explanation that the model should return an integer as a most
likely point estimate for the question.

Human Expert: Model is prompted as a "World Quizzing Champion’.

Al Expert: Model is prompted as an all-knowing Al, that always answers with
the correct number.

Al Assistant: Model is prompted with OpenAl’s “Al Assistant” prompt.
Average Human: Model is prompted as a human with limited general knowl-
edge.

Just the question: No context or explanation of the task is given.

The entire "AI Expert" prompt for the first example question in Table .1 would look
like this (typewriter for input, bold for possible model output):

The following is a conversation with an all-knowing AI. The AI is clever,

knowledgeable and always knows the correct answer.
The AI is asked questions by the Host. Every question has an integer as
the correct answer.

The AI answers only with the correct number.
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Host: How many episodes, in total, does the series How I Met Your Mother
have over its nine seasons?

Al: 208

The exact wordings and details of the six respective settings and prompts can be
found in Appendix

Correct Answer Percentage

Percentage of questions that are correctly answered by the model. Questions an-
swered ambiguously are counted as incorrect. If n questions are given to the model
and c of them get answered correctly, then ;- =100+ -% is the correct answer
percentage.

Combined Best

If the model answers a specific question correctly for any of the six prompts, then
this specific question is counted as correctly answered by the combined best of the
model. The combined best is therefore at least as good or better than the best prompt
and serves an upper limit for the model’s knowledge.

Combined Worst

If the model answers a specific question correctly for all six prompts, then this
specific question is counted as correctly answered by the combined worst of the
model. The combined worst is therefore equal to the worst prompt or worse.

Coefficient of Variation

The coefficient of variation shows the extent of variability in relation to the mean of
the population. The higher the coefficient of variation, the greater the dispersion.

CV = Standard Deviation
Mean

The coefficient of variation is useful as it is dimensionless and makes data sets with
different units or widely different means comparable (JRC, 2022).
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5.3.1. Correct Answers
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Figure 5.1.: Model size and prompt design have significant impact on Point Estimate

accuracy

Five observations stand out, in particular. Firstly, the accuracy of the point estimates
is significantly dependent on the context of the prompt in which the question is
given to the model. In each of the six different prompt designs, the wording of the
question from the dataset is identical. The given answers of the model still vary
significantly. Secondly, the "Only Question" prompt is performing best and for all
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models at least twice to four times as accurately as the "Average Human" prompt,
which is performing worst. Thirdly, the "Combined Best" accuracy significantly
outperforms all prompts. Even if the model can return the correct answer, even the
best prompt used cannot extract the model’s best possible knowledge robustly.

Standard Deviation | Mean | Coefficient of Variation
Davinci | 0.004 0.655 | 0.006
Curie 0.107 0.299 | 0.359
Babbage | 0.057 0.120 | 0.478
Ada 0.015 0.035 | 0.430

Table 5.1.: Coefficient of variation of point estimates for all models

Fourthly, the coefficient of variation, which is a measure of variability, has an inverse
relationship to model size: It is bigger in smaller models and smaller in bigger
models. Bigger models have more robust point estimate accuracies, as can be seen in
Table[5.1} Fifthly, although Davinci’s accuracy for the "Average Human" prompt is
the worst compared to other prompts, an accuracy of around 53% seems beyond
the level of accuracy and general knowledge of most humans. Therefore, Davinci
significantly overestimates the accuracy of an average human'’s general knowledge.

Comparison of all Engines, grouped by Prompt
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Figure 5.2.: Model size greatly improves point estimate accuracy

Comparing the models point estimates directly to each other makes two further
observations easily visible. Firstly, model size increases the accuracy of point estimates
enormously. The respective mean over all prompts and questions for the models Ada,
Babbage, Curie, Davinci are rounded to 3%, 12%, 30% and 65% respectively. Secondly,
in two cases can a smaller model outperform a bigger model in one specific prompt.
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Namely, Ada outperforms Babbage’s accuracy for the "Human Expert" prompt and
Babbage outperforms Curie’s accuracy for the"Average Human" prompt.

5.3.2. Distribution of Errors

Point Estimate Errors by Engine
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Figure 5.3.: Point Estimate Errors are smaller for bigger models

In Figure the model responses for all six prompts were combined. Ambiguous
responses were not counted because they do not have a valid point estimate error.
Two observations about the point estimate prediction errors stand out. Firstly, bigger
model size not only improves the percentage of correct answers as seen in Figure
but also minimizes the size of prediction errors for false answers. It is also observed
that the interquartile range, the 5th and 95th percentiles (whiskers), and the extreme
values are closer to the true value when the model size is bigger. Secondly, while
the median is always 0, the mean is negative for all models. This means that there
is a bias in the point estimates for all models, which are on average too low. The
bias is bigger for smaller models. Overall, the average share of ambiguous answers
for the Davinci, Curie, Babbage, and Ada model is 1.9%, 13.8%, 18.2%, and 19.2%
respectively.
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6. Uncertainty Estimates

6.1. Motivation

In this first set of experiments, we ask the models to estimate how likely a proposed
answer is true. In every experiment, the model makes estimates for four different
proposed answers separately. The four proposed answers are the correct answer
Neorrect, the correct answer + 10, 119 = Heorrect + 10, the correct answer + 100, 1199 =
Neorrect + 100 and the correct answer + 1000, 11000 = Mcorrect + 1000. We have previously
evaluated each model’s accuracy in the "Point Estimate’ Experiments from section
From a calibrated model, we would expect that the estimated probability that
Neorrect 18, in fact, correct reflects the knowledge of the respective model. So, Davinci
should be more certain that 7.yt is correct than Ada. And we would expect, that
the bigger the difference between the proposed answer and #corect 1S, the less likely
each model evaluates that the proposed answer is true because the models do not
only get the answer right sometimes but also made point estimates, that scatter
around the correct answer, as seen in Figure Each experiment is increasingly
demanding, as I start out with a simple "True or False” multiple choice question,
and end with an open question about the uncertainty estimate of the model. To test
the models for robustness of their predictions, I changed the order of the returned
answers or did experiments that are similar to each other.

6.2. Evaluation

6.2.1. Prompts

For all experiments, each model answered every question in the dataset for four
different proposed answers. In order to make my results comparable to previous
research, [ used the same multiple choice formatting as used by Rae et al.|(2021) and
Kadavath et al.| (2022).

The entire prompts for the first example question in Table .1jwould look like this
(typewriter for entire prompt, italic for variable question and bold for variable
proposed answer):
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True or False

Question: How many episodes, in total, does the series How I Met Your Mother
have over its nine seasons?
Proposed Answer: 208
Is the proposed answer:
(A) True
(B) False
The proposed answer is:

To test for robustness, I also evaluated the same "True or False’ prompt with "True’
and ‘False” interchanged

Question: How many episodes, in total, does the series How I Met Your Mother
have over its nine seasons?
Proposed Answer: 208
Is the proposed answer:
(A) False
(B) True
The proposed answer is:

True or False or | don’t know

Question: How many episodes, in total, does the series How I Met Your Mother
have over its nine seasons?
Proposed Answer: 208
Is the proposed answer:
(A) True
(B) False
(O I don’t know
The proposed answer is:
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Multiple Choice Uncertainty Estimates

To increase the likelihood that the model will return one of the possible multiple
choice answers, I included the "(" in the prompt.

Question: How many episodes, in total, does the series How I Met Your Mother
have over its nine seasons?
Proposed Answer: 208
How likely is it that the proposed answer is true?
(A) 10%
(B) 30%
(@ 50%
D) 70%
(E) 90%
The likelihood that the proposed answer is correct is (

To test for robustness, I also evaluated different percentages as multiple choice
answers.

Question: How many episodes, in total, does the series How I Met Your Mother
have over its nine seasons?
Proposed Answer: 208
How likely is it that the proposed answer is true?
(A) 20%
(B) 40%
(Q©) 60%
(D) 80%
The likelihood that the proposed answer is correct is (

Free Uncertainty Estimates

Question: How many episodes, in total, does the series How I Met Your Mother
have over its nine seasons?

Proposed Answer: 208

How likely is it that the proposed answer is true?

The likelihood in percent that the proposed answer is true is
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6.3. Results

6.3.1. True or False
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Figure 6.1.: Models answer to True or False questions. Davinci is roughly calibrated,
but overestimates the chance of a proposed answer being true. Curie
and Babbage are both not calibrated and not robust. They almost always
choose the most recent Multiple Choice option. Ada is also not calibrated
but consistent in choosing "False" as the answer in around 99% of the
cases
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The Davinci Model shows robustness for interchanging the answer options "True’
and 'False’. However, there is an average 3.3% increase in probability to answer
"True’ for the order (A) False (B) True. The probability of identifying the correct
answer as true is above 80%, which is higher than any prompt in the "Point Estimate’
experiment in section (5.2)) as well as the combined best values of 79.6% for the
Davinci model. There is a clear trend of identifying an incorrect proposed answer as
incorrect when the proposed answer is worse. While only 25% - 30% of proposed
answers that are +10 of the correct answe, are labeled as incorrect, for proposed
answers that are +1000 away from the correct answer, more than 90% are identified
as false. Overall, the Davinci model shows calibration because the more "off" a
proposed answer is, the more likely Davinci is to identify it as false. However, the
Davinci model has a bias toward labeling proposed answers as true. The Curie and
Babbage model show an almost identical pattern. They both answer with false for
the (A) True (B) False prompt and True for the (A) False (B) True prompt more than
90% of the time - independently of whether the answer is correct, slightly wrong,
or entirely wrong. Therefore, they show no robustness for switching answers and
show no difference in identifying proposed answers as true or false, depending on
whether they are true or false. The Ada Model always returns 'False” as an answer,
regardless of the correctness of the proposed answer, or the order of the choices. In
that way, it is more "robust" than the Curie and Babbage model, but its answers
are still not even rudimentary calibrated. The share of ambiguous answers for the
Davinci, Curie, Babbage, and Ada model are 0.7%, 0.1%, 1.3%, and 1.9% respectively.

41



Chapter 6. Uncertainty Estimates

6.3.2. True or False or | don’t know

Davinci - True or False or | don't know
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Babbage - True or False or | don't know
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Curie - True or False or | don't know
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Ada - True or False or | don't know
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Figure 6.2.: Models answers to True or False or I don’t know Multiple Choice question.
Davinci is roughly calibrated, but overconfident in its answers. Curie,
Babbage and Ada are all not calibrated. Babbage, to a lesser degree Curie
and to an even lesser degree Ada acknowledge their lack of knowledge.
All three smaller models answer with "True" less than 2% on average.

The Davinci model identifies 75% of correct answers as true and identifies 95% of
proposed answers that differ by 1000 from the correct answer as false. Overall, it
is calibrated because the more the proposed answer differs from the actual correct
answer, the lesser Davinci estimates the answer to be correct. However, the Davinci
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model is overconfident in its ability to differentiate correct from incorrect answers,
and only answers with "I don’t know" in 2.6% of cases. The Curie, Babbage, and
Ada Model are much more willing to answer with "I don’t know" with average
probabilities of 40%, 68%, and 15% respectively. All three models hardly ever respond
with (A) True with 0.7%, 0.0%, and 1.6% respectively. The Curie Model is much more
likely to select "False” if the proposed answer is correct or off by 10, than if a proposed
answer is off by 100 or 1000 and the Ada model selects "True” more often when the
proposed answer differs more from the correct answer, with probabilities for "True’ of
0.8%, 1.6%, 1.2%, and 2.8%, respectively. This is exactly inverse to the relationship we
would expect from a calibrated model. The Babbage and Ada models” responses are
constant, irrespective of the proposed answer. Therefore, they too are not calibrated.
The share of ambiguous answers for the Davinci, Curie, Babbage, and Ada model
are 0.0%, 0.1%, 0.3%, and 1.6% respectively, which is a similar but lower share than
for the "True or False” experiment.

6.3.3. Multiple Choice Uncertainty Estimates

Davinci - Multiple Choice Probabilities Davinci - Multiple Choice Probabilities
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Figure 6.3.: The Davinci model is not calibrated, its estimates are relatively static for
different proposed answers and inconsistent between the prompts

The Davinci model is not calibrated and uncertainty estimates are either static,
irrespective of whether the proposed answer is correct or incorrect, or inversely to
what one would expect. Furthermore, Davinci is inconsistent with itself, as it almost
always assigns a 50% chance for the first prompt and a mix between 60% and 80%
for the second prompt. The Davinci model does not return any ambiguous answers
for this experiment.
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Figure 6.4.: The Curie model is not calibrated, its estimates are static for different
proposed answers and inconsistent between the prompts

The Curie model is not calibrated and answers completely static. Furthermore,
Curie is inconsistent with itself, as it almost always assigns a 90% chance for the
first prompt and 60% for the second prompt. The Curie model does not return any
ambiguous answers for this experiment.

Babbage - Multiple Choice Probabilities
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Figure 6.5.: The Babbage model is not calibrated and inconsistent between the
prompts. Its estimates show some variability for the first prompt but are
completely static for the second prompt
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The Babbage model is not calibrated and answers inversely to what one would expect
for the first prompt, assigning 90% most often for proposed answers that are off by
1000. For the second prompt, Babbage always selects 60%, which is inconsistent with
its answer for the first prompt. Although there is some variability in the answers
for the first prompt, overall, the chosen answers are quite static and do not reflect
adequate change with different proposed answers. The Babbage model does not
return any ambiguous answers for this experiment.

Ada - Multiple Choice Probabilities Ada - Multiple Choice Probabilities
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Figure 6.6.: The Ada model is not calibrated, static for each prompt and inconsistent
between the prompts

The Ada model is not calibrated and answers identically, irrespective of whether the
proposed answer is correct or incorrect. Furthermore, Ada is inconsistent with itself,
as it almost always assigns a 90% chance for the first prompt and 60% for the second
prompt. The share of ambiguous answers for the Ada model is 10.9% and 4.9% for
the two different prompts respectively.

Overall, the models are not calibrated for multiple choice uncertainty estimates. The
proposed answers do not have any, or an inverse effect, of how calibrated models
would respond to answers with varying plausibility. For the first prompt, the models
selected (C) 50% more than half the time, and for the second prompt, selected (C)
60% around 90% on average over all models. This suggests that none of the models
understood the assigned task in a zero-shot setting.
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6.3.4. Free Uncertainty Estimates

Davinci - Probability of Truth Estimate for Proposed Answer
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Figure 6.7.: Davinci shows a weak but recognizable calibration for uncertainty
estimates. Overall, answers are variable, and the distribution is most
dense in the extremes. Proposed answers that are correct or differ by 10
mostly have an estimated likelihood of 50% and 100% being correct, while
proposed answers that differ by 100 or 1000 mostly have an estimated
likelihood of 10% and 0% being correct. 4.7% of answers are ambiguous.
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Figure 6.8.: Curie is not calibrated for free uncertainty estimates. Most probabilities
are between 90% and 100%, irrespective of the proposed answer. 0.5% of
answers are ambiguous.
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Babbage - Probability of Truth Estimate for Proposed Answer
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Figure 6.9.: Babbage is not calibrated for free uncertainty estimates. Most probabilities
are between 95% and 100%, except if the proposed answers differs by
1000 from the correct answer. In very few cases, Babbage estimates 0%.
6.3% of answers are ambiguous.
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Figure 6.10.: Ada is not calibrated for free uncertainty estimates because the model
always estimates a high probability for the proposed answers being
true. The variability of its answers are higher than for the Babbage and
Curie model, but lower than the Davinci model. The results for the
correct answer and +100, and the pair of +10 and +1000 are